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Abstract—In this paper we present a robust detection scheme
for cooperative spectrum sensing in cognitive radio (CR) net-
works with channel uncertainties. We consider a soft-decision
scenario at the fusion center for primary user detection, based on
the sensed test statistics submitted by the cooperating secondary
users. The scheme presented models the channel state information
(CSI) uncertainty employing an ellipsoidal uncertainty set. It
is then demonstrated that the optimal linear discriminator for
cooperative spectrum sensing towards primary user detection
in a CR system can be formulated as a second order cone
program (SOCP). Further, we also formulate a relaxed robust
detector (RRD) and a multicriterion robust detector (MRD) that
maximally separate the hypothesis ellipsoids at low signal-to-
noise ratio (SNR) and deep fade conditions. Simulation results
demonstrate that the detection error performance of the pro-
posed CSI uncertainty aware robust spectrum sensing schemes
are significantly lower compared to other uncertainty agnostic
schemes.

I. INTRODUCTION

The emerging broadband wireless technologies have led to a

tremendous rise in demand for radio spectrum as they require a

large amount of bandwidth to support multimedia applications.

This growth has outstripped spectrum availability, leading to

enormous pressure and scarcity of available spectrum. Studies

in [1], [2] reveal that the spectrum of licensed/primary users

(PUs) is highly under-utilized. To improve the efficiency of

spectrum utilization, CR has been proposed a revolutionary

new paradigm to allow a set of secondary users (SUs) to

opportunistically access vacant spectrum bands. Hence, one

of the key processes of a CR terminal is to reliably sense

the spectrum for absence of the licensed PU prior to such

transmission.

In this context, several spectrum sensing techniques have

been proposed in literature [3]–[5]. They can be broadly

classified as being either local or cooperative in nature. It

has been shown that cooperative sensing, in which a fusion

center combines the sensing results from several cooperating

users, has a much higher reliability for PU detection compared

to local schemes. Soft-decision schemes such as maximal

ratio combining (MRC) [6], which has the lowest detection

error, requires perfect channel estimation. Obtaining CSI is

a significantly challenging task in a wireless communication

system. Moreover, it is even more challenging in a cooperative

scenario involving multiple users. Hence, realistically, it is

possible to only obtain approximate channel estimates due

to errors in channel estimation combined with the limited

feedback in wireless channels.

Hence, for such scenarios, we propose a cooperative spec-

trum sensing scheme incorporating uncertainty in the available

CSI. The channel ambiguity is modeled as an ellipsoidal un-

certainty set centered at the estimate of the multiuser channel

coefficient vector, which constitutes the nominal CSI. We then

propose a linear detector to minimize the worst case spectrum

sensing error amongst these ellipsoidal uncertainty sets. It is

demonstrated that the above problem can be formulated as a

SOCP. Being convex in nature, the optimal solution can be

computed with a high degree of reliability. We then propose

the relaxed robust and multicriterion detectors and compare

them with the conventional uncertainty agnostic detector.

The rest of the paper is organized as follows. Section

II describes the scenario of cooperative spectrum sensing

considered in this paper followed by the multiuser multiple-

input multiple-output (MIMO) cognitive radio wireless system

model and the uncertainty aspects of the channel. Section

III describes the proposed cooperative spectrum sensing tech-

niques and formulates the framework for computation of

the robust detector, RRD and MRD. Simulation results are

presented in section IV and we conclude in section V.

II. SYSTEM MODEL

Consider a CR network with a PU base station, N SUs and

a fusion center. We consider a MIMO wireless CR system

in which the PU base-station possesses Nt transmit antennas

while each SU has Nr receive antennas. Hence, the baseband

system model of the above multiuser MIMO system for the

nth transmitted symbol vector is given as,

yi(n) = Hix (n) + ηi (n) (1)

where yi(n) ∈ CNr×1 is the received Nr dimensional

signal vector at the ith SU corresponding to the PU base

station broadcast symbol vector x (n) ∈ CNt×1. The vector

ηi(n) ∈ C
Nr×1 of ith SU at time instant n, is addi-

tive spatio-temporally white Gaussian noise with covariance

E
{

ηi(n)ηi(n)
H
}

= σ2INr
. The matrix Hi ∈ CNr×Nt

is the MIMO channel matrix corresponding to the channel

between the PU base station and ith SU. Each of the elements



hi (r, t) of the matrix Hi denotes the fading channel coefficient

between the tth transmit antenna of the PU base-station

and the rthreceive antenna of the ith SU. Let the channel

matrices corresponding to the N cooperating SUs be stacked

as H ∈ CNNr×Nt , given as,

H =











H1

H2

...

HN











We consider the transmission of a beacon signal by the PU

base station indicating the presence or absence of the PU.

Let the beacons pb,−pb ∈ CNt×1 denote the presence and

absence of the PU respectively. For instance, the canonical

signal pb = [1, 1, ..., 1]
T

can be employed as a possible

beacon. The theory proposed below however is not restricted to

such antipodal beacon sets and can be extended in a relatively

straight forward manner to other beacon signals. Each SU

senses the PU base-station beacon and conveys the information

to the fusion center. On receiving the measurements from

all the cooperating SUs, the fusion center collates these

statistics towards PU presence or spectral hole detection in

the CR system. From the system model described above, the

concatenated fusion center signal yf (n) ∈ CNNr×1 can be

described as,

yf (n) = Hx (n) + ηf (n) ,

where ηf (n) ,

[

η1 (n)
T
, η2 (n)

T
, ..., ηN (n)

T
]T

denotes

the concatenated receiver noise vectors. Let the vector h ∈
CNNr×1 be defined as h = Hpb. Hence, the PU detection

problem can be formulated as the binary hypothesis testing

scenario, with the null hypothesis H0 and alternative hypothe-

sis H1 denoting the absence and presence of the primary user

respectively. This can be in turn described as,

H0 :yf (n) = −h+ ηf (n) (2)

H1 :yf (n) = h+ ηf (n) (3)

It is well known [7] that the optimal detection error minimizing

detector for the additive white Gaussian noise scenario above

is the matched filter detector described as,

H0 :wHyf (n) < 0 (4)

H1 :wHyf (n) ≥ 0, (5)

where w , 1

‖h‖h is the spatial filter matched to the concate-

nated array response vector h. In fact, w is the normal to the

optimal separating hyperplane corresponding to the decision

regions H0, H1 as shown in Fig.1. Recent research in convex

optimization has resulted in the development of powerful tech-

niques for computation of optimal linear classifiers. Hence, the

above decision problem of computing the optimal separating

hyperplane can be formulated as,

min . ‖w‖
2

s.t. wHh ≥ 1 (6)

wH (−h) ≤ −1 (7)

Fig. 1. Plot of uncertainty in channel coefficient of SU, with N=2, A =
D(1, 0.5), h1 and h2 ∈ R are Rayleigh distributed.

By concatenating the real and imaginary parts of the vectors

w,h, it can be readily seen that the above optimization

problem is convex, as the L2 norm function ‖·‖
2

is convex

and the inequality constraints are affine. Note that the linear

constraints in (6) and (7) are essentially the same. However,

we deliberately retain this redundant structure to allow possible

generalization to detection scenarios where the beacon signals

are not necessarily antipodal in nature. Further, it can be

readily seen that the matched filter w , 1

‖h‖h is the unique

minimizer of the above constrained convex cost function. We

present a novel framework next to compute a robust optimal

decision rule in the presence of CSI uncertainty in cooperative

spectrum sensing scenarios.

III. ROBUST DETECTOR WITH CSI UNCERTAINTY

As described previously, obtaining accurate channel state

information regarding h is challenging owing to several factors

such as fading, estimation error from receiver noise, limited

feedback in wireless channels etc. Hence, very frequently, only

a nominal estimate ĥ of the true channel coefficient vector

h is available at the fusion center. This possible variation in

channel estimate with respect to the true channel coefficient

vector h can be described by the following uncertainty set [8]

paradigm as,

h ∈
{

ĥ+Au | ‖u‖ ≤ 1
}

(8)

Thus, the unknown true channel coefficient vector h lies in

an uncertainty ball in (NNr) dimensional space, where the

vector u ∈ CNNr×1 is such that ‖u‖
2
≤ 1. The matrix A ∈

CNNr×NNr describes statistical variations in h. Thus h in (8)

represents a vector lying inside the ellipsoid with center ĥ.

Hence, in the above scenario with uncertainty, the optimal

robust detector maximizes the worst case distance between

the ellipsoidal uncertainty sets. For example, consider the

scenario shown in Fig.1 with N = 2 SU with each having

one transmit antenna and one receive antenna, i.e., Nt = 1
and Nr = 1. In the case of no uncertainty, the estimate

of the channel coefficient
(

ĥ1, ĥ2

)

coincides with the exact



Fig. 2. Plot of uncertainty in channel coefficient of SU, with N=2, A =
D(1, 0.25), h1 and h2 ∈ R are Rayleigh distributed.

channel coefficients (h1, h2). Let
(

−ĥ1,−ĥ2

)

correspond to

hypothesis H0 and denote the absence of PU and
(

ĥ1, ĥ2

)

correspond to hypothesis H1 and denote the presence of PU in

(2) and (3) respectively for the two SU. As per the discussion

above, in the absence of uncertainty, the decision hyperplane

that minimizes the detection error is the hyperplane that bisects

the line joining the two antipodal hypothesis points described

above. This is shown in Fig.1.

Now consider the scenario illustrated in Fig.2, where the

true channel coefficients h1, h2 lie in the ellipsoidal uncer-

tainty set centered at the nominal channel estimate
(

ĥ1, ĥ2

)

.

Hence, the hypothesis points H1, H0 are in turn the ellipsoidal

sets centered at
(

ĥ1, ĥ2

)

,
(

−ĥ1,−ĥ2

)

respectively. Further,

for illustration, the uncertainty covariance considered therein

is A = D (1, 0.25), where D denotes a diagonal matrix. The

estimate of h2 has a greater reliability compared to that of h1.

Naturally then, the optimal decision hyperplane is one which

maximally separates these uncertainty sets corresponding to

the hypothesis points. This optimal hyperplane is shown in

the figure. Observe that it progressively places lower emphasis

on the report of user 1. Asymptotically, in the limit where the

uncertainty in h1 tends to ∞, the uncertainty ellipsoid becomes

a degenerate line parallel to the x-axis, thus entirely making

a decision based on the report of user 2.

Hence, the optimal decision hyperplane which maximizes

the distance between the ellipsoidal uncertainty sets can be

computed as,

min . ‖w‖
2

s.t. min
‖u‖≤1

wH
(

ĥ+Au
)

≥ 1 (9)

max
‖u‖≤1

wH (−h+Au) ≤ −1 (10)

Thus, the constraint min‖u‖≤1 w
H
(

ĥ+Au
)

represents the

worst case ellipsoidal distance, and maximizing the worst case

distance between the uncertainty ellipsoids leads to a robust

classifier. However, the constraint above can be equivalently
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Fig. 3. Comparison between Matched Filter and Robust detector for
Nr = 2, Nt = 2 MIMO, N = 4, D1 = D(1.6, 1.4, 1.2, 1),
D2 = D(1.28, 1.12, 0.98, 0.8), D3 = D(0.8, 0.7, 0.6, 0.5) and D4 =
D(0.32, 0.28, 0.24, 0.2).

represented as,

min
‖u‖≤1

wH
(

ĥ+Au
)

= wH ĥ+ min
‖u‖≤1

wHAu

= wH ĥ+wHA

(

−
AHw

‖AHw‖

)

= wH ĥ−
∥

∥AHw
∥

∥

where the second equality above follows from the fact that the

minimum of wHAu for ‖u‖ ≤ 1 occurs when u = − A
H
w

‖AHw‖ .

Hence, the optimization paradigm for construction of the

robust detector above can be equivalently formulated as,

min . ‖w‖
2

s.t. wH ĥ−
∥

∥AHw
∥

∥ ≥ 1

−wH ĥ+
∥

∥AHw
∥

∥ ≤ −1 (11)

The above problem can readily seen to be a SOCP optimiza-

tion problem [8]. Moreover, it is convex and can be readily

solved by a conic solver [9] to yield the robust detector

minimizing the worst case error for cooperative spectrum

sensing.

A. Relaxed Robust and Multicriterion Detection

At low SNR and deep fade conditions, the two hypothesis

ellipsoids are not always guaranteed to be strictly separated.

Hence, we formulate a relaxed robust discrimination (RRD)

version of the above problem as,

min . b

s.t. wH ĥ−
∥

∥AHw
∥

∥ ≥ 1− b

−wH ĥ+
∥

∥AHw
∥

∥ ≤ −1 + b

b ≥ 0. (12)

where b ≥ 0, the non-negative slack variable, is a measure of

the constraint violation. The above relaxed formulation maxi-

mally separates the hypothesis ellipsoids while minimizing the

number of misclassified points [8]. This SOCP problem yields
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Comparison between Matched Filter, Robust detector and RRD.
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Fig. 4. Comparison between Matched Filter, Robust detector and RRD for
MIMO with Nr = 2, Nt = 2, N = 2, D1 = D(1.6, 1.4, 1.2, 1) and
D2 = D(1.28, 1.12, 0.98, 0.8).

the relaxed optimal detector for cooperative spectrum sensing

applications. A multicriterion robust detector (MRD), which

is a trade-off between the robust detector (11) and RRD (12)

can be formulated by introducing a non-negative weighting

parameter λ as,

min . ‖w‖
2
+ λb

s.t. wH ĥ−
∥

∥AHw
∥

∥ ≥ 1− b

−wH ĥ+
∥

∥AHw
∥

∥ ≤ −1 + b

b ≥ 0. (13)

Below we present simulation results to validate the perfor-

mance of the PU sensing schemes described above.

IV. SIMULATION RESULTS

We consider a 2 × 2 MIMO scenario with N = 2
SUs, each having Nr = 2 receive antennas. The PU base

station possesses Nt = 2 transmit antennas. We consider

four different levels of CSI uncertainty, characterized by the

uncertainty matrices Ai such that Ai = UDiU
T , where

U is a random unitary matrix, and the diagonal matrices

D1 = D(1.6, 1.4, 1.2, 1), D2 = D(1.28, 1.12, 0.98, 0.8),
D3 = D(0.8, 0.7, 0.6, 0.5) and D4 = D(0.32, 0.28, 0.24, 0.2)
respectively. We begin by comparing the detection error per-

formance of the robust spectrum sensing scheme (11) with that

of the conventional nominal channel estimate based detector,

for each uncertainty scenario in Fig.3. It can be seen from the

results that the robust detector significantly outperforms the

conventional detector and further the performance gap widens

as uncertainty increases.

For the detection scenario in Fig.4 we consider random

statistical variation matrices Ai corresponding to the diagonal

matrices D1 and D2 respectively. We present the performance

of the RRD based spectrum sensing scheme described in

section III-A and compare its performance with the robust

detector and the conventional matched filter detector. Fig.4

follows the trend of Fig. 3 and it can also be seen that

the RRD has a slightly superior performance compared to
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Fig. 5. Comparison between Matched Filter, Robust detector, RRD and MRD
(λ1 = 4.5, λ2 = 4, λ3 = 3.8) for MIMO with Nr = 2, Nt = 2, N = 2
and D1 = D(1.6, 1.4, 1.2, 1).

the robust detector. In Fig.5 we plot the spectrum sensing

performance of the MRD scheme. It is evident from therein

that the performance of the MRD is similar to that of the robust

detector and it outperforms the conventional MF detector.

V. CONCLUSION

In this paper we presented novel techniques for cooperative

spectrum sensing in a CR network. We proposed a robust

detector for cooperative primary user detection which consid-

ers the channel uncertainty. We further demonstrated that the

worst case detection error minimization can be formulated as

a SOCP. It was observed that the performance of the robust

detector and the allied RRD and MRD schemes is superior

compared to that of the conventional uncertainty agnostic

detector for spectrum sensing.
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